Statically Inferring Performance Properties of
Software Configurations

Chi Li
University of Chicago
lichi@uchicago.edu

Henry Hoffmann
University of Chicago
hankhoffmann@cs.uchicago.edu

Abstract

Modern software systems often have a huge number of con-
figurations whose performance properties are poorly doc-
umented. Unfortunately, obtaining a good understanding
of these performance properties is a prerequisite for perfor-
mance tuning. This paper explores a new approach to dis-
covering performance properties of system configurations:
static program analysis. We present a taxonomy of how a
configuration might affect performance through program de-
pendencies. Guided by this taxonomy, we design LearnConf,
a static analysis tool that identifies which configurations
affect what type of performance and how. Our evaluation,
which considers hundreds of configurations in four widely
used distributed systems, demonstrates that LearnConf can
accurately and efficiently identify many configurations’ per-
formance properties, and help performance tuning.

CCS Concepts -« Software and its engineering — Soft-
ware configuration management and version control
systems; Automated static analysis; Cloud computing.

Keywords Software Configuration; Static Analysis; Perfor-
mance; Distributed Systems

ACM Reference Format:

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu. 2020. Statically
Inferring Performance Properties of Software Configurations. In
Fifteenth European Conference on Computer Systems (EuroSys ’20),
April 27-30, 2020, Heraklion, Greece. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3342195.3387520

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys "20, April 27-30, 2020, Heraklion, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6882-7/20/04...$15.00
https://doi.org/10.1145/3342195.3387520

Shu Wang
University of Chicago
shuwang@uchicago.edu

Shan Lu
University of Chicago
shanlu@uchicago.edu

1 Introduction
1.1 Motivation

Software configuration plays a critical role in performance
tuning, with system throughput and memory consumption
varying widely under different configuration settings even
for the same workload [30]. In practice, configuration is
often the only mechanism that end-users have to manage
performance across workloads, platforms, and usage goals
[2]. Unfortunately, appropriately setting configurations to
achieve specific goals is difficult, as the configuration space
is huge—with 100s or 1000s of parameters, each of which
takes a wide range of values—and the relationship between
configuration settings and the resulting performance is of-
ten unclear without trial and error. Empirical studies find
that performance issues contribute to 50% of configuration-
related patches in open-source cloud systems and 30% of
configuration-related forum questions [30]. In cloud sys-
tems, such mis-configurations have caused severe perfor-
mance problems and outages, costing hundreds of millions
of dollars [10, 15]. Clearly, users and administrators need new
tools to help understand how to configure these complicated
software systems.

Figure 1 illustrates the challenge of understanding
performance-related configurations through an example
from HDEFS, a widely-used distributed file system. The docu-
mentation shown in Figure 1a describes a configuration pa-
rameter, df's. namenode .max.objects, as limiting the num-
ber of objects in the file system, with 0 indicating no limit.
From the documentation, it is easy to understand the func-
tional difference between a 0 and a non-0 setting, but the
performance difference is unclear and undocumented. It is
only by examining this configuration’s usage in the code
(Figure 1b) that we can see the performance difference: if the
setting is non-0, then a lock is acquired. This code executes
for every user write request. Consequently, if the user/ad-
ministrator changes the configuration from non-0 to 0, the
write latency will drop, which will be difficult to interpret
without a deep dive into the code.

As the example shows, configurations are associated with
a rich set of performance properties. To properly tune the sys-
tem, a user must understand all configuration’s properties

https://doi.org/10.1145/3342195.3387520
https://doi.org/10.1145/3342195.3387520

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

<name>dfs.namenode.max.objects</name>
<description>The maximum number of files,
directories and blocks. A value of zero
indicates no limit to the number of objects
that dfs supports. </description>

(a) Configuration file hdfs-default.xml

1 if (maxFsObjects != @) {

2 lock ();

3 if (totalNodes() > maxFsObjects) {...}
4 unlock ();

5 3}

(b) Performance related code using the configuration

Figure 1. Documentation and code for a configuration pa-
rameter in HDFS.

including — but not limited to — the performance metric
(e.g., memory or latency) affected; the type of user requests
affected; the range of acceptable values for the configura-
tion; and the range of effects on the actual performance. It
is clearly unrealistic to expect users to trace the configura-
tion parameters through the code to understand all these
performance properties.

Much prior work identifies configuration issues that affect
functional correctness. Some approaches identify statistically
abnormal settings [29, 31, 42, 43] by comparing many users’
settings for the same configuration parameter. Some work
uses program analysis [7, 38] to identify the desired data
type or value range of a configuration to avoid exceptions
and to identify configurations that have dependencies with
software failure sites [3, 26, 37, 44]. These techniques are
inspiring but cannot be applied to understanding configu-
rations’ performance properties as the performance impact
typically has no relationship with the types of functional
behaviors — e.g., exception throwing or fail-stop errors —
explored by these prior works.

Some previous work applies machine learning [41, 45] and
control theoretic techniques [16, 17, 22, 30] to automatically
find performance-appropriate configuration settings. Learn-
ing and control approaches both rely on intensive profiling
and training to build models, requiring access to profiling
inputs at design time. Thus, the relationships they discover
between performance and configuration parameters are only
valid if the runtime behavior is within some known factor of
the design time behavior. If the workload varies considerably
or the users set a configuration to some extreme values not
exercised during profiling, the models these systems rely on
will be insufficient to deliver the required performance [8, 12].
Furthermore, such offline profiling or training requires sig-
nificant time to collect the necessary measurements [41],
and the time grows exponentially with the number of con-
figurations to be modeled.

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu

PerfConf-
PerfConf PerfOp pair | pattern
inary Identification Analysis
wl' N Performa.nce
Pattern- Properties
i
LearnConf spec! |.c
Analysis

Figure 2. LearnConf Overview

Overall, there is a need for new techniques that automati-
cally determine some performance properties of configura-
tions independent of inputs or statistical profiles. Such an ap-
proach would complement existing software documentation
and profiling techniques to help both users and automated
tools configure software systems for performance.

1.2 Contribution

This paper proposes static analysis techniques for under-
standing configuration parameter’s relationships to observed
performance. Static analysis can play an important role in
this process because—ultimately—it is the program logic that
determines how configuration affects performance.

Our key insight is that any configuration that affects per-
formance dynamically must have a data- or control-flow de-
pendency with certain time- or space-intensive operations,
which we refer to as Performance Operations or PerfOps.
Consequently, many performance impacts must be reflected
by static program structures and data/control dependency
relationships, and thus identifiable through static analysis.

Following this insight, we design a taxonomy of static
program dependency structures. This taxonomy summarizes
how a configuration setting affects: (1) the performance im-
pact from one dynamic instance of a PerfOp; (2) whether or
not a PerfOp executes at run time; or (3) the frequency or
the number of times a PerfOp executes at run time.

The taxonomy is sufficiently detailed so that once we
know a configuration can affect a specific PerfOp following
one of the patterns in the taxonomy, we can figure out many
detailed performance properties about this configuration.
These patterns are presented in Section 2.

Guided by our taxonomy, we design LearnConf, a static
analysis tool that automatically identifies configurations that
have performance impacts, referred to as PerfConfs, and in-
fers the detailed properties of a PerfConf. LearnConf works
in three steps, as shown in Figure 2.

First, LearnConf uses static data and control flow anal-
ysis to automatically identify configurations (PerfConfs)
that affect PerfOps. Second, given a pair of a PerfConf and
the PerfOp it affects, LearnConf analyzes the code on the
PerfConf-PerfOp dependency chain to categorize it accord-
ing to our taxonomy. Third, LearnConf conducts further
pattern-specific analysis to determine a PerfConf’s detailed
performance properties. These additional details include a

Statically Inferring Performance Properties of Software Configurations

variety of information useful for performance tuning includ-
ing: whether the relationship between configuration and
performance is linear or monotonic, whether the configura-
tion interferes with other configurations, and whether the
configuration affects user requests or systems services.

We evaluate LearnConf by applying it to four widely used
open-source systems, HDFS, HBase, Cassandra, and MapRe-
duce. LearnConf static analysis automatically identifies 69
PerfConfs that affect user-facing job performance. We care-
fully compare this result with both software documentation
and configurations manually picked by prior work for per-
formance tuning [1, 4-6, 18, 20, 27, 33-35, 45]. We find that
LearnConf has a low false negative rate of 15% (correctly
identifying 60 out of 71 true user-facing PerfConfs) and a
low false positive rate of 13% (only 9 out of the identified
PerfConfs have no performance impact). In comparison, we
find that among the configurations manually identified by
prior work, 15% of them actually have no performance im-
pact. Furthermore, prior approaches fail to identify 17 true
PerfConfs that can lead to out-of-memory or more than 10%
latency changes.

We also conduct in-depth case studies for 20 PerfConfs,
which demonstrate that LearnConf can indeed statically pre-
dict the dynamic performance properties of system configu-
rations, accurately predicting the type of performance im-
pact and quantitative relationship between the PerfConf’s
value and the corresponding Performance metric. Finally,
our experiments show that LearnConf improves profiling-
based techniques for tuning PerfConfs by avoiding problems
caused by incorrectly trained models.

2 Performance Impact Taxonomy

Our taxonomy of program-dependence relationships between
a PerfConf and a performance-intensive operation (PerfOp)}
includes three high-level categories:

1. A data dependence between the PerfConf and a PerfOp
parameter (Section 2.1);

2. An if-related control dependence where the PerfConf
helps determine whether the PerfOp is executed (Sec-
tion 2.2);

3. A loop-related control dependence where the Perf-
Conf controls the number or frequency of PerfOp exe-
cutions (Section 2.3).

Table 1 provides one toy example for each of the detailed
patterns that belong to one of these three categories. For-
mulas and figure illustrations about how the performance
impact of the toy-example code snippet might change under
different configuration settings are also shown in the table,
and will be elaborated below.

1We define a PerfOp as an instruction or an API call that is particularly time-
intensive (e.g., sleep, lock, I/O) or memory-intensive (e.g., new, malloc).
We detail what APIs are treated as PerfOps by LearnConf in Section 3.1.2.

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

2.1 Data Dependency

Here the configuration’s value (or a derivative) is passed as
a parameter to the PerfOp and hence affects every dynamic
instance of the PerfOp.

In cases when the corresponding PerfOp-parameter value
has a linear relationship with the PerfOp’s performance con-
tribution (e.g., for sleep, new, malloc, etc.), the PerfConf
also has a simple, often linear, relationship with the corre-
sponding performance metric, as shown in Table 1 Figure
1.3.

2.2 IF-related Control Dependency

In this category, a variable C derived from a PerfConf is used
in an if-condition predicate, whose evaluation picks from
code paths containing different PerfOps. Consequently, the
PerfConf setting affects which PerfOp is executed. Suppose
the PerfOps on two code paths have performance contri-
butions a and b, then the execution of one instance of the
if-statement is a piece-wise function, as shown in Eq. 2.2 and
Figure 2.3 in Table 1. If the if-statement is executed multiple
times, the aggregated performance impact also depends on
how the comparison with C changes over time. We identify
four such patterns of change.

Compared with a constant The PerfConf-derived variable
C is compared with a constant variable V in the predicate,
with neither C nor V ever changing values after their initial
assignment. Therefore, the PerfConf has a range effect on
performance because the corresponding if-else code is only
executed for a particular range of PerfConf settings. In part
of the range, the PerfConf has one effect on performance,
but when the PerfConf is moved across the range boundary
it suddenly has a very different effect. In Table 1 Figure 2.1,
we illustrate the simple and also common scenario where the
C’s value is exactly PerfConf and the performance output
(e.g., memory consumption) of the if/else branch is constant.
Once the configuration is set, the program always takes one
branch and has the same performance impact (Figure 2.4).

In this pattern, the PerfConf statically directly determines
whether or not certain PerfOps will be executed.

Compared with a getting-closer variable The PerfConf-
derived variable C is compared with a variable V whose value
changes, moving towards C, in one branch of the if-else struc-
ture and does not change in the other branch. Looking at
one dynamic instance of this if-else code structure, its per-
formance output depends on V’s current value in Table 1
Figure 2.3. Looking at a long execution including multiple
instances of this if-else structure, V approaches C and even-
tually causes the if-else predicate’s result to flip and never
flip back—the performance output of every dynamic if-else
instance eventually switches from one set of PerfOps to the
other set, as illustrated in Figure 3.4 in Table 1.

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu

Table 1. Configurations’ Performance-Impact Taxonomy. To ease the discussion, all the formulas, figures, and explana-
tions in the table focus on the Toy Examples, where C is the value of a configuration and Perf refers to the memory-consumption
contribution of one instance of the toy-example code snippet. The Perf—Conf figure in the 4th column depicts how the Perf
(the y-axis) might change with the configuration setting (the x-axis); the Perf-Time figure in the 5th column depicts how the
Perf (the y-axis) might change over time (the x-axis) under different configuration settings. In both columns’ figures, we use
C1 (blue dots) and C2 (red crosses) to represent two different configuration settings, and C1 < C2.

Pattern ‘ Toy Example ‘ Formula ‘ Perf—Conf ‘ Perf—Time ‘ Explanation
Data Dependency — PerfConf affects the amount of performance contribution from one PerfOp
1 b ¢ 1.1 1.2 1.3 1.4
new bytelCl; Perf=C 2 © X X X X X X X C affects the impact of one
Data c new byte[] linearly.
! 10000000
Control Dependency (IF) — PerfConf affects whether a PerfOp is executed
2 2.1 2.2 23 o 2.4
‘é’/ if (V<=C) XXX XXXX¥X | C affects whether execute
on- new bytel[al; c1 new byte[al or new
stant else new byte[b]; 00000000 byte[b] statically.
y 3 3.1 3.4
w .
if (v<=C) { C affects when to switch
ing- oorew®
getting-| yv... new byte[al; from new byte[a] to new
closer | 3 else BR®XX byte[b].
var new byte[bl; (ORS) [Rer)
VI A)
/ i (ve=0) ¢ 4 - > e “
w . .
bk Vi+: new byte[al: . & o 8 ® C affect how quickly switch
} else { from new byte[a] to new
—_—
forth | 7y __ " hew byterbl; ; ®EBX® 8 | bytelb].
var. } 4 Qa @
y 5 5.1 & 5.4
w/ un- s
if(v<=C) c2 C affects the probability
X@& X B/X@
related new byte[al; o of new bytel[a] executes
var. else new byte[b]; O oe®’ o over new byte[b].
Control Dependency (LOOP) — PerfConf affects the frequency/#-of-times a PerfOp executes
6 6.1 6.2 63 6.4
Regular Perf=a*C c o xxx xx x x| Caffects the number of new
loop for (;i<C;i++) { o byte[a] via loop bound.
bound new bytel[al; rCIO000000
}
R 17 7.1 7.2 7.3 7.4
cgular Perf=a*N/C C affects the number of new
o c1 NC1 000000
100? for (;i<N;i+=C) { ’ byte[a] via loop stride.
stride new bytel[al; c2 aN/c2 X X X X X X
}
8 8.1 8.2 8.3 8.4
lSync while (i<C) { C affects the frequency of
oop wait(); OO XO ® O | new byte[a] via synchro-
} nization loop.
new bytel[al; a e
9 9.1 o 9.4
. Perf=a a o c
Infinite new bytelal; C affects the frequency of
loop sleep(C); O ® O ® O | new byte[a] viaa fixed in-
//in infinite loop terval.
Cll C|2

Statically Inferring Performance Properties of Software Configurations

In this pattern, such a switch only happens once, and the
PerfConf affects when the switch occurs.

Compared with a back-and-forth variable The PerfConf-
derived variable C is compared with V whose value changes
in different directions in the two branches of the if-else struc-
ture. Thus, when the conditional is executed multiple times,
V’s value goes up and down, causing the predicate’s outcome,
and hence the performance output, of each if-else instance
to switch back and forth (Figure 4.4 in Table 1).

In this pattern, the PerfConf’s value controls how quickly
the switch occurs.

Compared with an unrelated variable The PerfConf-derived

variable C is compared with a variable V whose value is not
conditioned on C. Typically, Vs is related to workload, sys-
tem status, or some other external property.

In this pattern, the PerfConf’s setting affects the long-
term probability of one set of PerfOps being executed over
the other, and hence, the expected long-term performance
outcome of the if-else code, as shown in Figure 5.4 in Table
1.

Note In theory, there could be other patterns of this IF-
related control category. For example, the value of C could
also change over the time, or the value of V might change
in both branches of the if-else structure but in the same di-
rection. These cases are rare in practice and can be easily
converted to some of the patterns discussed above.

2.3 LOOP-related Control Dependency

In this category, a variable C derived from the PerfConf is
used inside a loop to control the bound, stride, or other fea-
tures that hence affects the number or frequency of PerfOp
execution.

Affecting loop bound C is used in the bound expression
of a PerfOp-containing loop. Figure 6.1 from Table 1 de-
picts a simple scenario, where the performance output of the
loop-enclosed PerfOp is roughly constant, the loop stride
is constant, and the bound is linear in C. In this case, the
relationship between the PerfConf and the corresponding
performance metric is linear (Formula 6.2 and Figure 6.3).
This simple case is common in practice, as we will see in
Section 5.

Affecting loop stride C is used to set the loop stride, as
shown in Figure 7.1 of Table 1. Here, a higher PerfConf value
reduces the executions of a corresponding PerfOp as shown
in Figure 7.3 in the table.

Affecting synchronization-loop Sometimes, C is the bound
of a synchronization loop (e.g., a spin lock in Figure 8.1 of
Table 1) with a PerfOp executed once the loop exits. In this
case, the loop’s index variable does not change inside the
loop, but can be set by another thread. The bound variable,

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

C, helps decide how long the thread needs to wait until it
can execute the PerfOp after the loop. The PerfConf setting
here decides how frequently a performance burst occurs, as
illustrated in Figure 8.4 in the table.

Affecting infinite-loop As illustrated in the toy example
in Figure 9.1 of Table 1, some system threads contain infinite
loops that execute until system shut down. In this case, C
cannot affect when the loop exits but may affect the execu-
tion time of an operation inside the loop (e.g., through data-
dependency), and hence affect the frequency of all other Per-
fOps inside the loop. The PerfConf setting here decides the
frequency of PerfOps that are executed periodically through-
out system lifetime, as shown in Figure 9.4 in the table.

2.4 Discussion

Our taxonomy explores how the setting of a single PerfConf
may impact software performance by affecting the execu-
tion of a PerfOp in the software. Our taxonomy is based on
general program dependency categories—data dependency
and control dependency, and looks at the impact of a Per-
fOp in a general way—whether it executes, how often it
executes, what is the impact of a single dynamic instance
of it. Consequently, our taxonomy is expected to generally
apply to different software systems in different program-
ming languages. Of course, in different systems, the exact
performance metrics and PerfOps of interests might be dif-
ferent, and the exact program analysis used to identify the
dependency could be different.

Of course, our current taxonomy still has limitations in the
following ways. First, for simplicity, it focuses on the relation-
ship between one PerfConf and one PerfOp. In practice, it is
possible that one PerfConf can affect multiple PerfOps along
different program paths or even along the same program path.
We will need to look at these multiple PerfConf-PerfOp pairs
together to precisely understand how the setting of a Perf-
Conf can affect software performance. We will discuss this
issue in later sections. Second, our discussion above assumes
the PerfConfs under study to have numerical types. Indeed,
previous study showed that the majority of PerfConfs in real
world are of numerical types [30]; these numeric configu-
rations, in nature, have non-constant searching space, and
hence are more difficult to configure and need more tool
support. Having said that, although rare, it is possible for
boolean or string typed configurations to affect performance
(e.g., a configuration that decides whether to use caching
or not). Although currently not the focus of our taxonomy,
they can potentially be covered by our taxonomy by extend-
ing the control-dependency patterns—these boolean/string
configurations can be used as part of an IF/LOOP predicate
and hence affect the execution of PerfOps.

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

3 PerfConf and Pattern Identification

As shown in Figure 2, LearnConf analyzes Java byte code and
outputs a list of performance-related configurations and their
performance properties. To achieve that, LearnConf first
identifies configuration variables (Section 3.1.1) and PerfOps
(Section 3.1.2) in the target system. LearnConf then analyzes
the dependency between every PerfConf-PerfOp pair to cat-
egorize it into one of the 9 patterns in our taxonomy (Section
3.2). Finally, LearnConf performs pattern-specific analysis
to determine detailed performance properties (Section 4).

3.1 Identifying PerfConfs and PerfOps
3.1.1 What are configuration (derived) variables?

LearnConf first identifies all the invocations of configuration-
loading APIs (e.g., all the getInt, getFloat, and other APIs
inside Hadoop’s Configuration class) in the software, and
tags the return values of these API calls as initial members of
the configuration-variable set. LearnConf then keeps adding
into this set with variables that have data dependency with
any variable already in the set, until reaching a fix point.
LearnConf does not track control dependency at this step,
except for one case: if the assignment of a boolean variable V},
depends on C, we consider V}, to be derived from C, because
Vp may then be used for an if/loop predicate, which will be
equivalent to C being directly involved in the predicate.

Identifying variables that have data dependency on a vari-
able C is straightforward when C is a stack variable. Learn-
Conf simply conducts dependency analysis inside the func-
tion holding C; when C is used as the parameter or the return
value of a function, LearnConf conducts similar analysis in-
side the callee or caller function®.

Things get harder when C is a heap variable. In this case,
we may need to use expensive alias analysis to first identify
all references of C and then analyze program dependency
accordingly, which would be difficult to scale.

In LearnConf, we simplify the dependency analysis related
to heap variables leveraging the common usage pattern of
configuration variables — a configuration variable is usually
used to compute the value of either a stack variable of a prim-
itive type or a dedicated configuration-field of an object (e.g.,
LruBlockCache.maxSize, HRegion. flushSize, etc). Con-
sequently, when the variable C is a field f of a heap object
obj of class CL, LearnConf considers the field f of all objects
of class CL as a configuration variable, and does not conduct
any alias analysis. In practice, we have found our design to
well balance accuracy and analysis complexity, as will be
demonstrated in the evaluation.

3.1.2 What are performance operations?
To check which configuration variables are used to affect
performance, we first need to decide which code snippets

2 All the data and control dependency checking conducted by LearnConf,
unless specially explained, leverages the program dependency graph of
WALA [32].

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu

should be considered as performance-intensive operations
(PerfOps). Below, we discuss how LearnConf decides memory-
expensive operations and time-expensive operations.

The main challenge here is that many, if not all, instruc-
tions in a program make positive contributions to the ex-
ecution time and memory consumption. It is meaningless
to consider all of them as PerfOps. Therefore, LearnConf
identifies a set of operations that are likely to have large
performance impacts at run time, using simple static analysis
that scales to large system software. LearnConf does not
aim to be free of false positives or false negatives, which is
infeasible given the nature of this task.

Memory Operations Many operations can lead to a tempo-
rary memory-consumption increase. To identify operations
that can potentially lead to long-lasting, large impacts, Learn-
Conf focuses on two types of operations related to arrays.
First, a heap or static array allocation instruction that allo-
cates an array with a non-constant array length (e.g., new
CLASS[V]). Second, a container-add operation that adds the
reference of an array, whose content comes from an I/O-
library operation and hence has a likely non-constant size
but untrackable allocation site, into a heap or static container.

The analysis to identify the first type of operations above
is straightforward. To identify the second type, LearnConf
first identifies every array-typed return or parameter vari-
able v of any I/O read API call in the program (e.g., b in
InputStream: : read(byte[] b, int off, int len)). For each such
v, LearnConf tracks its data-flow chains to see if v is copied
into a heap object (e.g., 0.f = v).If so, LearnConf considers
any object that belongs to the same class as o as containing
I/O content. Once LearnConf identifies that v is copied into
a heap object o, LearnConf does not further check if the
content of o gets copied to other heap objects. Finally, for ev-
ery container-add operation container.add(a), LearnConf
checks the class type of a to see if this operation belongs to
the second type described above.

Latency operations We consider several types of opera-
tions as time-expensive, including (1) operations that ex-
plicitly cause a thread to pause, including Thread: : sleep()
and all lock-synchronization APIs (i.e., Object: :wait(); (2)
Javal/O-library operations; (3) operations that directly affect
the parallelism level of the system, including new Thread(),
new ThreadPoolExecutor(), etc.; (4) a configurable list of
expensive operations in distributed systems, which currently
only includes heartbeat () functions in LearnConf.

3.1.3 What are performance-related configurations?

After identifying configuration variables and PerfOps, Learn-
Conf then analyzes whether any PerfOp has data or control
dependency upon any configuration variable. If so, the corre-
sponding configuration is identified as a performance-related

Statically Inferring Performance Properties of Software Configurations

configuration (PerfConf). LearnConf will then feed the con-
figuration variable and the corresponding PerfOp into its
pattern-identification component (Section 3.2).

This analysis is actually done in the same pass as Learn-
Conf identifies configuration variables. When LearnConf
identifies a function parameter as a configuration variable,
it checks whether this function is a PerfOp. If so, the corre-
sponding configuration is identified as a PerfConf. Similarly,
when LearnConf identifies a variable that is part of a control-
flow predicate, LearnConf further analyzes the correspond-
ing if-else/loop body, including k levels of callee functions
(default k is 2), to see if there is any PerfOp enclosed. If so,
the configuration is identified as a PerfConf.

3.2 Identifying PerfConf patterns

Data-dependency pattern Whenever a configuration vari-
able appears as the parameter of a PerfOp, LearnConf iden-
tifies such a data-dependency pattern.

There is just one exception: if the performance operation is
sleep orwait, LearnConf further checks whether the sleep
or wait is inside an infinite loop (i.e., none of the variables
involved in the loop-exit condition is changed inside the loop
body). If so, LearnConf considers this as an Infinite Loop
pattern.

Control-dependency IF patterns When a configuration
variable C is used in the predicate of an if-statement, Learn-
Conf checks the variable V that is compared with C. If V is
a constant, a “Compared with constant” pattern is caught.
Otherwise, the value of V must be changed somewhere in
the program, outside or inside the if-else body, which Learn-
Conf analyzes to make further categorization following the
definition in Section 2: when V is not changed in either the
if-branch or the else-branch, this is a “Compared with un-
related variable” pattern; when V’s value is only changed
in the if-body or the else-body, but not both, this is a “Com-
pared with getting-close variable” pattern; otherwise, this is
a “Compared with back-and-forth variable” pattern.

Control-dependency LOOP patterns When a configura-
tion variable C is used in a loop-exit condition predicate,
where it is compared with a variable V, LearnConf conducts
a set of checking about C and V to see which LOOP pattern
this belongs to. (1) If neither V nor C is updated in the loop
body, this is identified as a synchronization loop (“Synchro-
nization loop bound” pattern); (2) If V is updated in the loop
body and yet C is a loop invariant, LearnConf considers the
corresponding PerfConf to affect the loop bound (“Regular
loop bound pattern”); (3) If C is updated in the loop body,
LearnConf checks the difference between the values of C
before and after the update. If the difference depends on
the value of PerfConf, LearnConf considers the PerfConf to

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

affect how an index-variable changes its value across itera-
tions (“Regular loop stride” pattern); otherwise, LearnConf
considers the PerfConf to affect the loop bound.

When LearnConf checks whether a variable v is updated
inside a loop body or inside an if-else body for above pat-
terns, LearnConf mainly relies on the program-dependence
graph provided by WALA [32]. When v is a heap object,
LearnConf applies type-based alias analysis and checks k
levels of function calls (default k is 2) to see if v is updated
inside the callee functions.

3.3 Discussion

When we design the static analysis in LearnConf, we inten-
tionally trade some analysis accuracy for analysis efficiency
and scalability. For example, LearnConf largely relies on
the program-dependence graph in WALA [32], and only
conducts limited inter-procedural analysis and type-based
alias analysis. LearnConf assumes that all objects under the
same class share the same properties regarding whether they
contain configuration variables or I/O data. The rationale
behind our design is that we want to make sure LearnConf
can scale to analyzing large-scale software systems and also
that configuration variables tend not to be involved in com-
plicated data/control flow or alias references in practice. As
we will see in our evaluation (Section 5), LearnConf does
make wrong judgement about PerfConfs due to its static
analysis inaccuracy, but only rarely.

4 Analysis Beyond Patterns

After the analysis above, LearnConf has discovered a list
of PerfConfs. For each PerfConf, LearnConf has identified
PerfOps that the PerfConf affects through a specific pattern.
In this section, LearnConf infers additional performance
properties that help users understand and tune PerfConfs.

4.1 Input Analysis

Many PerfConfs affect system performance under specific
inputs/workloads. Knowing which user input/workload is
affected by a PerfConlf is critical for performance tuning.

LearnConf analysis starts from every user-request entry
function F, and then identifies all functions F,, that can
be invoked directly or indirectly by F,,. A PerfConf-PerfOp
pair is determined to affect user request u if the PerfOp is
inside a function in F,,. Otherwise, it is determined to affect
background services.

Identifying user-request entry functions is straightfor-
ward, as they are typically well-defined RPC functions in a
dedicated client-server interface class in distributed systems
(e.g., in HDFS, the ClientProtocol interface class defines
all user-request entry functions). To identify F,, LearnConf
initializes it with the entry function. It then extends the set
until reaching a fixed point based on three rules: (1) if a func-
tion f’ is invoked by a function f € F,, f” also belongs to Fy,;

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

(2) if a function f” is an RPC function that can be invoked by
an RPC-callin f € F,,, f’ also belongs to F,; (3) if a function
f € B, starts a new thread (e.g., through Thread: : start),
the entrance function of the corresponding child thread (e.g.,
a Thread: : run function) also belongs to F,,.

Finally, we should note that the above analysis works well
for PerfOps that affect execution latency, but is unsuitable for
PerfOps that affect memory consumption or thread creation—
these PerfOps’ impact tends to go beyond one thread and
would be considered by LearnConf to affect both user re-
quests and background services.

4.2 Slope Analysis

For a PerfConf that has a roughly linear relationship with
a performance metric (i.e., P=ax Conf +p), knowing the
exact slope of this linear relationship (i.e., @) is useful for
performance tuning and satisfying performance constraints.
Prior work typically obtains this information from extensive
profiling [8, 9, 30].

There are four patterns from Table 1 which are most likely
to produce a linear relationship: Data dependency, Regular
loop bound, Regular loop stride (inverse linear), and Infinite
loop (inverse linear). For these patterns, the parameter of
a PerfOp,? or the bound or index or frequency of a loop
that encloses a PerfOp has a data dependency upon the Per-
fConf. Consequently, LearnConf simply extracts the data-
dependence slice deriving such parameter or bound or index
from the PerfConf and applies symbolic evaluation to that
slice to obtain an expression f(conf), like sortmb*1024x1024
for the example in Figure 3a and timeout * Math.pow(2,
attempts) for the example in Figure 3b (LearnConf con-
siders binary operations, unary operations, and Java Math
library functions in its evaluation). Given such an expres-
sion, LearnConf easily outputs the slope, which could be an
expression with constants like 1024 % 1024 for configuration
sortmb in Figure 3a or an expression with program variables
like 24/¢™P!s for configuration timeout in Figure 3b.

Note that, it is possible that a PerfConf affects more than
one PerfOp, and LearnConf handles this by further checking
whether multiple PerfConf-PerfOp pairs are on the same
path. We consider two cases. (1) If a PerfConf-PerfOp pair
does not share its execution path with other PerfOps that
also depend on this PerfConf, its slope analysis result can
be directly reported. (2) If multiple PerfConf-PerfOp pairs
(for the same PerfConf) are on the same program path and
affect the same performance metric, the performance impact
of this PerfConf along this path should consider all these
pairs together. If all these pairs indicate linear relationship,
the combined impact is still linear; otherwise, LearnConf

3LearnConf assumes an input list of PerfOp APIs, as well as annotation
about which parameter of a PerfOp API has a roughly linear relationship
with the performance contribution of this PerOp.

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu

1 int maxUsage = sortmb * 1024 x 1024;
2 buffer = new Byte[maxUsagel];

(a) iosortmb has constant slope

while (!stopped) (
wait = timeout *x Math.pow(2,attempts);
sleep(wait);

}

[FNECRN R

(b) timeout has non-constant slope

Figure 3. PerfConfs with different slope

will not produce a slope. Just like that in Section 3, Learn-
Conf checks execution paths precisely for intra-procedural
cases (i.e., when two pairs of PerfConf-PerfOp are inside the
same function), but trades accuracy for efficiency in inter-
procedural cases.

4.3 Configuration Setting Range Analysis

In some cases, changing a PerfConf’s setting does not affect
system performance unless the change moves across a range
boundary, like that in the “Compared with constant” pattern.
In this case, LearnConf extracts the C op const predicate,
symbolically replaces C with f(Conf) (i.e., how C’s value is
derived from the PerfConf, computed in a way similar as that
in Slope Analysis), and outputs the constraint expression
involving the PerfConf setting.

In some cases, the program logic imposes a valid range
for a PerfConf. To identity such a range, LearnConf adopts a
similar approach as previous work [38]. When a configura-
tion variable C is used in an if-predicate, LearnConf checks
whether an exception is raised or C is reset with another
value in the if-else body. Different from previous work, Learn-
Conf not only considers constant values [38], but also sym-
bolic values with program variables.

4.4 Configuration Relation Analysis

Sometimes, multiple configurations may work together to
affect a PerfOp. This information can help a performance
tuner to group these configurations together in tuning.

LearnConf identifies two PerfConfs C; and C; as related
by checking whether they may affect the same PerfOp along
the same path.

LearnConf further categorizes their relationship by com-
paring the PerfConf-PerfOp dependency chains. (1) If the
configuration variable of C; along its PerfConf-PerfOp de-
pendency chain is affected by an if-predicate containing a
configuration variable of C;, C; only takes effects when C;
enables so. For example, in Figure 4a, PerfConf lowerLimit
takes effect only when memStoreSize is larger than another
PerfConf upperLimit. (2) Otherwise, C; and C, take perfor-
mance effect simultaneously. In Figure 4b, numRetries and
sleepTime determine the number of iterations and the time
spent on each iteration to affect user latency.

Statically Inferring Performance Properties of Software Configurations

1 if (memStoreSize >= upperLimit) {
2 for (;memStoreSize > lowerLimit;) {
3 flushRegion(); //lock and I/0
4 3
5 3}
(a) upperLimit enables lowerLimit
1 for (; tries < numRetries; ++tries) {
2 Thread.sleep(sleepTime);
3 3

(b) numRetries and sleepTime work simultaneously

Figure 4. Related Configurations

In practice, users may want to know whether the setting
of two related configurations could conflict with each other.
LearnConf’s analysis above can help answer this question.
When configuration C, can enable/disable the effect of con-
figuration Cj, their setting can potentially conflict: a change
to C; that aims to increase its performance impact would fail
if a change to C, disables the effect of C; (e.g., imagine one in-
creases upperlLimit to largely bypass the for loop in Figure
4-a, while lowerLimit is also changed.). On the other hand,
when two configurations take effect simultaneously, they
may conflict with each other if one is changed to increase a
performance metric and the other is changed to decrease (e.g.,
imagine one increase numRetries and decrease sleepTime
in Figure 4b).

4.5 Monotonicity Analysis

A basic requirement for performance tuning is knowing
whether increasing a PerfConf will cause the corresponding
performance metric to go up or down, or sometimes-up-
sometimes-down.

From Table 1 — particularly the figures in column Perf-
Conf — it is straightforward to determine whether changes in
the PerfConf directly affect the PerfOp and whether they are
positive or negative. The remaining questions are whether
the effects are still monotonic when: (1) the PerfConf has
range effect; and (2) one PerfConf affects multiple PerfOps.

LearnConf identifies potential range effects as follow-
ing. First, when the configuration variable C is used in an
if-predicate, LearnConf checks whether an increase of C
could lead to more PerfOp executions in two disjoint re-
gions, like if (C!=a) PerfOp(); or if (C<a || C>b)
PerfOp() ;. Second, LearnConf checks the symbolic expres-
sion of C = f(conf) and cautions users of possible non-
monotonic relationship in following cases: (1) f(conf) is frag-
mented like f = (conf < A)? fi : f2; (2) f(conf) contains a
non-monotonic mathematical function like Math . power (*, 3).

Regarding one PerfConf affecting multiple PerfOps, for
simplicity, assume that LearnConf finds two PerfOps of the
same performance type (e.g., latency), PerfOp1 and PerfOp2,
that both depend on the same PerfConf along the same pro-
gram path. LearnConf then analyses the PerfConf-PerfOp1

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

and PerfConf-PerfOp2 relationships independently. If the
result is inconsistent, LearnConf cannot declare the relation-
ships monotonic. This situation can arise if increasing the
PerfConf causes PerfOp1 to execute more and PerfOp2 to
execute less, for example.

5 Evaluation

We have implemented LearnConf using WALA [32], a static
analysis infrastructure for Java bytecode. We evaluate Learn-
Conf on four open source distributed systems, Hadoop Dis-
tributed File System (short as HD), the distributed key-value
store databases HBase (short as HB) and Cassandra (short
as CA), and the distributed computation framework MapRe-
duce (short as MR). These systems each contain around 100
to 150 configurations (477 altogether) in their default config-
uration files (e.g. hbase-default.xml, hdfs-default.xml, etc.).

We run all the experiments on machines with 32-core Intel
Xeon E5-2620v4 @ 2.10GHz, and 128GB RAM, with Ubuntu
14.04.6 LTS and JVM v1.8.

5.1 User-facing PerfConf Identification

Benchmark configurations To compare with LearnConf,
we collect PerfConfs from two types of alternative sources:
(1) configurations used by prior work on performance tuning,
and (2) configurations mentioned in software performance-
tuning guides/tutorials [1, 33], written by software experts.
For the first source, we consider a large number of prior
works on performance tuning, including one that identifies
PerfConfs through intensive profiling and statistical mod-
eling [20] and many others where the respective authors
manually select configurations that they believe might have
performance impact and are hence worth tuning [4-6, 18,
27, 34, 35, 45]. Overall, we have three alternative sources for
MapReduce ([18], [6], and [34]), three for Hbase ([4], [35],
and [5]), three for HDFS ([33], [1], [34]); and three for Cas-
sandra ([45], [20], and [27]). They are denoted as Source 1-3
for each application in Table 2.

When a configuration is identified as related to perfor-
mance by both LearnConf and an alternative source, we
consider it as a true PerfConf. When a configuration is iden-
tified as related to performance by only LearnConf or only
alternative sources, we manually studied the source code
and ran experiments to get the ground truth, many of which
we will explain in details below.

Overall results As shown in Table 2, LearnConf identifies
69 user-facing PerfConfs (out of the total 477 configurations)
with only 9 false positives and 11 false negatives across all
systems. In comparison, all alternative sources suffer from
many more false negatives, with more false negatives than
true PerfConfs in most cases. Furthermore, LearnConf finds
17 true PerfConfs that did not show up in any prior sources;

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu

LearnConf Source 1 Source 2 Source 3
All F+ F- Al F+ F- Al F+ F- Al F+ F-
MapReduce (MR) 16 1 7 14 0 8 16 0 6 10 0 12
HBase (HB) 19 1 7 0 13 12 1 9 9 0 11
HDFS (HD) 13 5 1 2 0 7 2 0 7 1 0 8
Cassandra (CA) 21 2 1 24 8 4 10 0 10 6 1 15
Total 69 9 11 - - - - - - - - -

Table 2. User-facing PerfConfs reported by LearnConf and those used by other sources. The alternative sources 1-3 are
explained in details in Section 5.1. Since these sources for different applications are different, their numbers are not summed

together. F+: false positives; F-: false negatives.

we were able to run experiments for 13 out of these 17 Perf-
Confs to consistently trigger significant performance differ-
ences, which we elaborate below.

Note that many performance tuning works focus on mini-
mizing the latency of certain benchmarks, such as Terasort
latency [18] or bulk loading latency [4]. Therefore, they may
focus on only PerfConfs related to certain workloads, and
most do not consider memory consumption in their tun-
ing model. This explains why some works have higher false
negatives. In comparison, LearnConf finds all PerfConfs,
even if their effects are triggered only for some inputs or
workloads, which are not necessarily the ones profiled by
prior performance-tuning work. In this sense, LearnConf
and profiling-based methods are complementary: LearnConf
could find an initial set of PerfConfs to pass to a profiling-
based statistical method that can then rank the dynamic
impact of those configurations for specific workloads.

True positives LearnConf identifies 17 PerfConfs that have
not been identified by previous configuration tuning works
or documentation. We break them into three categories: (1)
For 4 PerfConfs, we experimentally confirm that their set-
tings can affect memory consumption or latency so much
that out-of-memory or timeout errors were triggered. (2) For
9 PerfConfs, our experiments consistently trigger more than
10% performance difference using two different configura-
tion values. For example, native_transport_max_threads
determines the number of handler threads in Cassandra, and
can have up to 7.3X latency difference under two different
configuration settings in our experiments. However, this
configuration is not used by any performance tuning works
and is even missed by exhaustive profiling [20]. (3) For 4
PerfConfs related to lock operations, we confirm the config-
urations do affect the number of lock acquisitions. However,
we were unable to consistently trigger significant perfor-
mance differences between different configuration values.

False positives There are 9 false positives in four categories.
(1) In 4 cases, LearnConf finds configurations that affect an
array’s size, but the code applies a bound so that it does not
cause significant memory consumption differences. (2) An-
other 2 false positives are caused by configurations affecting

10

P1 P2 P3 P4 P5 P6 P7 P8 P9
MR 2127 0 8 9 18 2 0 9
HB 20 11 1 3 30 37 1 2 7
HD 20 16 3 6 14 10 0 1 20
CA 18 0 51 1 25 13 0 0 1
Total 79 54 55 18 78 78 3 3 37

Table 3. PerfConf-PerfOp pattern distribution (Pk indicates
the k-th pattern listed in Table 1, like P1 indicating the “Data”
pattern in Table 1).

Tot. Correct False Pattern False Taint
MR 94 90 4 0
HB 112 96 16 0
HD 90 85 0 5
CA 109 107 2 0
Total 405 378 22 5

Table 4. PerfConf-PerfOp pattern identification accuracy.

latency related PerfOps, but in an asynchronous path or in a
path that is executed after the job terminates. (3) One case is
caused by Java Polymorphism not handled by LearnConf. (4)
Two configurations affect the creation of background threads
that have little effect on user-request latency.

False negatives There are 11 false negatives in 3 categories.
(1) Nine have complicated control dependencies, which could
not be captured by LearnConf. For example, a configuration
may affect the type of compression object created, which
affects which compression algorithm is used. (2) For one
case, the configuration affects memory consumption by re-
assigning the reference variable so that the object previously
referenced can be garbage collected. (3) In the final case, the
configuration is a parameter to a child JVM process.

5.2 Performance Pattern Identification

Does LearnConf find the correct pattern? In total, Learn-
Conf has identified 118 PerfConfs from these 4 systems,
which correspond to 405 PerfConf-PerfOp pairs. Table 3
summarizes the pattern distribution of these 405 PerfConf-
PerfOp pairs. In this table, P1 ... P9 indicate the first (i.e.,

Statically Inferring Performance Properties of Software Configurations

“Data”) to the ninth (i.e., “Infinite loop”) patterns listed in
Table 1. We manually examine the source code to judge
whether the inferred pattern is correct. As shown in Table
4, LearnConf correctly identifies the patterns for 378 out of
405 pairs.

We categorize all the incorrectly identified patterns to
two types. First, false taints—LearnConf incorrectly identi-
fies configuration variables due to special data dependences.
For example, two HDFS configurations replication and
blockSize are stored as bits in the header of INodeFile.
LearnConf cannot distinguish them when the program tries
to read different bits from the header. Second, false pat-
terns, which mostly occur for IF control-dependence patterns,
where inaccurate alias analysis sometimes causes LearnConf
to miss variable updates.

Does the pattern correctly capture performance behav-
iors? We run experiments for at least one PerfConf for every
pattern. Our experimental results are shown in Figure 5: all
match the pattern-specific behaviors discussed in Section 2.

Data dependency: PerfConf sortmb is used as a parameter
to create a byte array, as shown in Figure 5a, memory con-
sumption grows linearly with the configuration value, which
matches Figure 1.3 in Table 1.

Control Dependency (IF): Figures 5b-5e show 4 different pat-
terns that match 2.4-5.4 in Table 1. (1) In HDFS, maxFsObj is
compared with a constant 0 to decide whether to skip the
object-number checking along with the directory lock when
writing new objects; Figure 5b shows the amount of time
taken by the enclosing function checkFsObjectLimit() un-
der different configuration settings. (2) Figure 5c¢ shows that
latency increases after memory usage exceeds the value of
configuration parameter buffer_size, as key-value pairs
are written into on-disk structure FileCache (higher la-
tency) instead of in-memory structure MemCache. (3) Write
buffer size continues to accumulate before it hits configura-
tion bufferSize and is flushed, causing the memory con-
sumption to go up and down in Figure 5d. (4) For requests
with sizes larger than commitLogSize, the commit log is not
written and thus has a lower latency. Sending requests with
random size could have random latency as in Figure 5e. Note
that, in this particular case we changed commitlog append
from asynchronous to synchronous for illustration purpose.

Control Dependency (LOOP): Figure 5f-5i show 4 different
patterns matching Table 1 Figure 6.3, 7.3, 8.4 and 9.4. (1)
PerfConf lowerLimit affects the worst latency through the
lower bound in a loop (Figure 5f). (2) splitSize affects the
number of MapTasks a job is spit into by affecting the loop
stride. As shown in Figure 5g, given a certain job, latency
increases when splitSize is too small. (3) Figure 5h shows
that user requests are blocked in a synchronization loop
when Memstore size is larger than blockingSize, which

11

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

Tot. PerfConfs
Conf. Tot. UF LR RE RP MO
MR 129 33 16 18 7 11 31
HB 98 26 19 11 8 13 26
HD 155 32 13 16 12 9 27
CA 95 27 21 14 6 5 23
Total 477 118 69 59 33 38 107

Table 5. All PerfConf performance properties. UF: User-
facing; LR: linear relation; RE: range effect; RP: having re-
lated PerfConfs; MO: monotonic.

Comparison
S2

Properties
LR RE

Configuration S

—_

multiplier
bloom.size
max.filesize
write.buffer
indexBlk.max
cacheonwrite
wakefrequency X
scanner.caching X
retries.number X
block.cache.size X
flush.size v
pause

upperLimit
lowerLimit

X
v
4
blockingSFs v
4
X
X

4
X
X
4
X
X

compactThres
hanlder.count
hfile.format
preclose.size# - -
Table 6. All user-facing PerfConfs in HBase. $1-3: Source
1-3; LR: linear relation; RE: range effect; RP: having related
PerfConfs; MO: monotonic; #: false positive of LearnConf.

LN NE NN NN R NN SN
PRSNSSSRIXNCNN XXX XXX XKL
R N R NN
NN X X X X X X X XN X X X X
Rl SRt N N T 1 Vi T N N N T TR T T N N
l\\l!l!\l\\\\\l\\\\%

has higher latency. (4) msgInterval controls the interval
between sending heartbeats. Figure 5i shows the cost of
building the heartbeat message under two configuration
settings.

5.3 Performance Property Inference

Overall, LearnConf identifies 118 out of 477 configurations in
these 4 systems to have performance impact. Table 5 breaks
down these 118 PerfConfs based on different performance
properties identified by LearnConf. We also list all the user-
facing PerfConfs and their detailed properties identified by
LearnConf from HBase in Table 6, which we will refer to as
examples below.

Input analysis As shown in Table 5, 40% to 75% of all the
PerfConfs are identified as using-facing. For these PerfConfs,

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu

120 X } 2
0-H- 10" -@-3*10
___ 600 - — usage< usage>
g g 80 ° [d o g buffer_size buffer_size
< 400 < SPOAN =,
5 g 1% &4 %0 ¢ 200 gl ‘
g 200 fo) 405 \.». L] o
s 5 S ‘
0 ‘ ‘ | om - 0 ‘ - ‘ |
0 200 400 600 0 5 10 15 0 100 200 300 400
Configuration(sortMB) Request Request

(a) Data Dependency: sortMB

(b) If - w/ Constant: maxFsObj

(c) If - w/ getting closer: buffer_size

10 120 R 10
& 5reccccoooo0000000000 . o co--%--o %8
S o g 9 2
g° 3 60 : g °
E-‘IO % 3 4
§12(5) Mem Flush T 0F. e--- -0 ® - _e--e- B o
<- o) — o
25) ‘ ‘ ‘ ‘ 0 s = ‘ ‘ ‘ ‘
200 400 600 800 1000 0 2 46 8 10 12 0 01 02 03 04 05
Request Request Configuration(lowerLimit)

(d) If - w/ back&forth: bufferSize

(e) If - w/ unrelated: commitlogSize

(f) Regular loop bound: lowerLimit

25 100 —. 80
D £
20 — 80 .
= = 60
S s £ & g [Ro0p 0000 00P 0000
& = O 40
2 Q 4o T
S 10 OCJ g 20 msgin:erva::gs g
o 5 ‘Es‘ 20 2] msginterval=3s
o - <
= 9 | | | | | |) 0 | | | |) ® 9 | |)
0 20 40 60 80 100 120 140 0 10 20 30 40 50 T "o 5 10 15 20
Configuration(splitSize) Request Time

(g) Regular loop stride: splitSize

(h) Sync loop: blockingSize

(i) Infinite loop: msglnterval

Figure 5. Experimental result for 9 patterns. (For sub-figure 5b, 5¢, 5d, 5e and 5h, we keep sending requests and measure

latency or memory consumption after every request.)

o

450

f()=0.9"x+310 - - - o
@ 400 5 8
3 S 6
= 350 2
g 2
& 300 B 2
o
= o0

0 0.1 02 03 04 05 06 0.7 08
lowerLimit

20520 40 60 80 100
bloomSize(MB)

(a) Linear relation (b) Range effect

¢ 7 80
173 —_
o 2 e _.-® ® o a0
23 g Ew c / °
s t 3 |
So2 B 24
£ g &
5 ®© 20
1 Fog | ¥
0 L L L [] L L L s
4 3 2 4 0 1 2 3 4
1 2 3 4 . 4
flushSize (MB) maxFsObj(x10™)

(c) Related configurations (d) Non-monotonic

Figure 6. Evaluation for performance property inference

LearnConf also identifies which specific user request a Per-
fConf affects. For instance, in HBase (Table 6), LearnConf
identifies that block.cache.size and wakefrequency af-
fect performance during user get() requests, while five
other PerfConfs take effect during createTable() requests.
In contrast, balancerPeriod, which determines the load-
balancing period in HMaster, does not correspond to any
user-request function and is not identified as user-facing.

Slope analysis Table 5 shows that 42% to 52% of PerfConfs
have linear effects on performance metrics. Looking into
the 8 linear HBase PerfConfs (Table 6, two PerfConfs have
constant slope: handler.count affects the thread number
linearly with a slope 1 and bloom. size affects the memory

12

consumption linearly with a slope 1. The other 6 linear-effect
PerfConfs’ slope expressions each contains at least one non-
constant program variable. We also run experiments for Per-
fConf bloom.size, which controls the size of a bloom filter.
We profile the memory usage under different configurations
and use linear regression to estimate the slope. As shown in
Figure 6a), the slope is indeed close to 1.

Configuration setting range analysis Table 5 shows that
21% to 37% of PerfConfs have a range effects. Looking
closely at the 6 range-effect PerfConfs in HBase (Table 6),
four of them are used in the "Compare with constant" pat-
tern. The other two are reassigned with a boundary value
when the PerfConf is outside the valid range: lowerLimit

Statically Inferring Performance Properties of Software Configurations

has a range of (—oo, upperLimit]; and indexBlk.max has a
range of (0, c0). We also verify this through experiments,
where we fix the upperLimit to be 0.4, and we increase the
lowerLimit from 0.05 to 0.8 with a step size of 0.05. Our
experiment result shows that the worst latency drops while
lowerLimit increases, and the worst latency is stable when
lowerLimit is over upperLimit 0.4 as shown in Figure 6b.
This property is not documented in the default configura-
tion file, yet LearnConf identifies these effects through static
analysis.

Configuration-relation analysis Table 5 shows that 19%
to 50% of PerfConfs are related to at least one other PerfConf
(i.e., a PerfConf can affect the same PerfOp with another
PerfConf in the same run). For example, there are 12 HBase
PerfConfs that have related PerfConfs. In some cases, one
PerfConf’s setting can enable or disable the effect of the
other PerfConf: lowerLimit only takes effect when the cur-
rent Memstore size is larger than upperLimit; bloom.size
takes effect when hfile. format is larger than the minimum
supported format. In other cases, a group of PerfConfs take
effect simultaneously to affect the same performance met-
ric. For example, the HRegionServer in HBase blocks user
writes when one Memstore size is larger than (flushSize
* multiplier). The two configurations flushsize and
multiplier are hence related—an increase in either of them
leads to less frequent blocking. We experimentally confirmed
this relationship in Figure 6c, where the x-axis and y-axis
represent the setting of these two configurations and the
red-to-blue colors indicate high-to-low blocking frequency.

Monotonicity analysis As shown in Table 5, most Perf-
Confs have a monotonic relationship with performance. Ta-
ble 6 shows that all user-facing PerfConfs are monotonic in
HBase with 12 having a positive relationship and 7 having a
negative one. As a rare non-monotonic example, in HDFS,
PerfConf maxFsObject is used in "Compared with constant”
pattern. Namenode in HDFS skips the directory lock when
maxFsObject is 0, and we experimentally show that both
negative and positive values have a higher latency than zero
(Figure 6d). There are also a few cases where LearnConf finds
that each PerfConf affects more than one PerfOp in the same
program path with some being positive relationships and
some being negative, and, thus, LearnConf cannot draw a
monotonicity conclusion.

5.4 Analysis Time

As shown in Table 7, LearnConf takes 139 seconds to 355
seconds to analyze these four systems. 30% to 61% of this
time is spent on WALA to build call graphs and program
dependency graphs; 6% to 53% of time is spent on Taint
Analysis and Dependency Analysis for configurations; the
Other time is spent on additional analysis like Input Analysis.

13

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

Running Time

LOC #Conf

WALA Taint Others Total
MR 137K 129 76s 28s 34s 139s
HB 267K 98 216s 21s 118s 355s
HD 149K 155 57s 101s 33s 192s
CA 151K 95 67s 78s 11s 156s
Table 7. Analysis Time
) 400 ;d
=
‘; 300 | LearnConf Enhanced =
S 200 f SmartConf Only
&
O 100
=
O0 5 10 1_5 20 25 30 35
Time(s)

Figure 7. Applying LearnConf to enhance SmartConf

5.5 Applying LearnConf for Performance Tuning

LearnConf demystifies the complicated relationship between
configurations and performance and can help existing auto
tuners, like SmartConf [30], BestConfig [45] and others.
We evaluate LearnConf using one SmartConf benchmark,
HBase3813 [11]. The corresponding configuration is the
max.queue.size, which determines the maximum queue
size. SmartConf uses statistical profiling to determine the
relationship between the queue size and memory usage, and
then uses this profile to dynamically tune the queue size
to prevent out of memory (OOM). However, SmartConf’s
approach can still lead to OOM in 5 seconds (yellow line in
Figure 7) when the offline profiling workload (0.1MB request
size) is significantly different from the online workload (2MB
request size). In contrast, LearnConf statically identifies that
the queue size is further effected by the size of the objects in
the queue—i.e., the size of user requests—and this additional
information can easily be passed to SmartConf’s runtime
to help correct the profiling problem, keeping the memory
usage below the limits (blue line in Figure 7).

We also expect LearnConf to help manual performance
tuning, informing users which configurations can affect
which performance metrics in which way. For example, in
one Stack Overflow post, a user asked about how to solve
an out of memory problem he encountered in HBase [25].
After one hour’s debugging with help, the user finally re-
alized that the out of memory problem was caused by ac-
cidentally setting the configuration scanner.caching to
Integer MAX_VALUE. If the user used LearnConf, he would
quickly know that among hundreds of configurations in

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

HBase, 6 of them can greatly affect memory consumption,
including scanner.caching. Future work can conduct user
study to quantitatively assess how much LearnConf can help
manual performance tuning.

5.6 Limitations of LearnConf

The evaluation above shows the potential of LearnConf and
we believe that LearnConf is just a starting point in using
static analysis to help understand performance properties
of software configurations. The current prototype of Learn-
Conf still has the following limitations. First, its PerfConf
taxonomy currently does not handle non-numerical configu-
rations and does not directly model how one PerfConf affects
multiple PerfOps, as discussed in Section 2.4. Second, as a
static analysis tool, LearnConf intentionally trades some ac-
curacy for efficiency and scalability by conducting limited
alias analysis and inter-procedural analysis, as discussed in
Section 3.3. Third, some customization is needed while ap-
plying LearnConf to a new software. Particularly, we may
need to customize the list of PerfOp APIs for the target soft-
ware. Although some common performance intensive APIs
like sleep, new, malloc, lock can be shared among soft-
ware, it is possible that the target software has its own utility
functions that will be helpful to annotate as PerfOps (e.g.,
heardbeat functions in many distributed systems). Finally,
LearnConf only aims to help improve users or auto-tuning
tools’ understanding about performance related configura-
tions. Automatically deciding the best configuration setting
is out of the scope of LearnConf.

6 Related Work

Misconfigurations Previous work has conducted empirical
studies related to misconfigurations [36, 40]. Previous works
also applied statistical analysis [7, 29, 31, 42, 43], static pro-
gram analysis [26, 37] and dynamic program analysis [3, 44]
to detect and diagnose mis-configurations, but they did not
focus on PerfConf. X-ray [2] helps diagnose performance
problems by dynamic information flow tracking and perfor-
mance summarization. Given a performance problem already
triggered, X-ray effectively attributes run-time costs to differ-
ent configurations, but is not designed to statically analyze
configurations’ performance properties.

Configuration auto-tuning Many configuration auto-
tuning approaches have been proposed for improving system
performance [13, 21, 41, 45]. Those works mainly rely on a
huge amount of training data to learn the complicated rela-
tion between configuration and performance. For example,
the data collecting overhead in DAC is from 53 hours up to 92
hours under different workloads [41]. Recently, SmartConf,
simplified the profiling process by assuming simple linear
models between configuration and performance [30]. How-
ever, all those works still require re-training or re-profiling

14

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu

when workloads change significantly and they are suscepti-
ble to noise during data collection.

LearnConf is fundamentally different from these works;
it explores all the configurations in the software without
relying on particular workloads or training data and identi-
fies its impacts based performance impact patterns through
static analysis. LearnConf and dynamic training techniques
can complement each other. On the one hand, knowing the
relation between configuration and performance statically,
LearnConf can be used to eliminate some noise in the dy-
namic training techniques. On the other hand, dynamic train-
ing techniques can derive more accurate knowledge about
non-constant program variables for LearnConf.

Performance bugs Static analysis has been widely applied
to find bugs, even performance bug, such as inefficient loop
[28], performance cascading [19], redundant traversal bugs
[24], and other performance anti-patterns [14, 23, 39]. These
works demonstrate that static analysis is useful to capture
inefficient code. However, none of these works focused on
performance-related configurations and their performance
properties.

7 Conclusion

Large software systems are often equipped with a huge num-
ber of configurations, and many of them have significant
impacts on performance. Unfortunately, many PerfConfs are
badly documented and hard to understand. We summarize
9 PerfConf performance patterns in taxonomy, and imple-
ment a static analysis tool LearnConf to capture PerfConf
patterns. Our evaluation shows that LearnConf can correctly
identify PerfConfs, capture performance patterns, and infer
corresponding performance properties with lower false pos-
itive/negative. Its results are useful for both end users and
existing auto-configuration framework.

Acknowledgments

We would like to thank Ravi Chugh for his suggestions
on this project, our shepherd and the anonymous review-
ers for their insightful feedback and comments. This re-
search is supported by NSF (grants CCF-1837120, CNS-
1764039, CNS-1563956, CNS-1514256, I1S-1546543, CNS-
1823032, CCF-1439156), ARO (grant W911NF1920321), DOE
(grant DESC0014195 0003), DARPA (grant FA8750-16-2-0004)
and the CERES Center for Unstoppable Computing. Henry
Hoffmann’s effort is additionally supported by the DARPA
BRASS program and a DOE Early Career award.

References

[1] Apache hadoop 2.9.2 - hdfs users guide. https://hadoop.apache.org/
docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html.
[2] Mona Attariyan, MIchael Chow, and Jason Flinn. X-ray: Automating
root-cause diagnosis of performance anomalies in production software.
In Presented as part of the 10th USENIX Symposium on Operating Systems

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html

Statically Inferring Performance Properties of Software Configurations

[10

[11

[12

[13

(14

[15

(16

(17

[19

[20

— =

—_ =

[l

=

=

—

—

—

[t

Design and Implementation (OSDI 12), pages 307-320, Hollywood, CA,
2012. USENIX.

Mona Attariyan and Jason Flinn. Automating configuration trou-
bleshooting with dynamic information flow analysis. In OSDI, vol-
ume 10, pages 1-14, 2010.

Xiangiang Bao, Ling Liu, Nong Xiao, Fang Liu, Qi Zhang, and Tao
Zhu. Hconfig: Resource adaptive fast bulk loading in hbase. In 10th
IEEE International Conference on Collaborative Computing: Networking,
Applications and Worksharing, pages 215-224. IEEE, 2014.

Xiangiang Bao, Ling Liu, Nong Xiao, Yang Zhou, and Qi Zhang. Policy-
driven configuration management for nosql. In 2015 IEEE 8th Interna-
tional Conference on Cloud Computing, pages 245-252. IEEE, 2015.
Chi-Ou Chen, Ye-Qi Zhuo, Chao-Chun Yeh, Che-Min Lin, and Shih-
Wei Liao. Machine learning-based configuration parameter tuning on
hadoop system. In 2015 IEEE International Congress on Big Data, pages
386-392. IEEE, 2015.

Nick Feamster and Hari Balakrishnan. Detecting bgp configuration
faults with static analysis. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2,
pages 43-56. USENIX Association, 2005.

Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated
design of self-adaptive software with control-theoretical formal guar-
antees. In Proceedings of the 36th International Conference on Software
Engineering, pages 299-310. ACM, 2014.

Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated
multi-objective control for self-adaptive software design. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing, pages 13-24. ACM, 2015.

Google. Google cloud storage incident #19002. https://status.cloud.
google.com/incident/storage/19002, 2019.

HBase-3813. Change rpc callqueue size from handlercount *
max_queue_size_per_handler. https://issues.apache.org/jira/browse/
HBASE-3813.

Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury.
Feedback Control of Computing Systems. John Wiley & Sons, 2004.
Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang
Dong, Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A self-tuning
system for big data analytics. In CIDR, 2011.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and detecting real-world performance bugs. ACM
SIGPLAN Notices, 47(6):77-88, 2012.

Wall Street Journal. Facebook, google and apple hit by unusual out-
ages. https://www.wsj.com/articles/facebook-and-instagram-suffer-
lengthy-outages-11552539752, 2019.

Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand.
Self-adaptive and self-configured cpu resource provisioning for virtu-
alized servers using kalman filters. In ICAC, 2009.

Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand.
Adaptive resource provisioning for virtualized servers using kalman
filters. TAAS, 2014.

Sandeep Kumar, Sindhu Padakandla, Priyank Parihar, K Gopinath,
Shalabh Bhatnagar, et al. Performance tuning of hadoop mapreduce:
A noisy gradient approach. arXiv preprint arXiv:1611.10052, 2016.
Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S
Gunawi, Xiaohui Gu, Xicheng Lu, and Dongsheng Li. Pcatch: auto-
matically detecting performance cascading bugs in cloud systems. In
Proceedings of the Thirteenth EuroSys Conference, page 7. ACM, 2018.
Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra,
Wolfgang Gerlach, Travis Harrison, Folker Meyer, Ananth Grama,
Saurabh Bagchi, and Somali Chaterji. Rafiki: A middleware for param-
eter tuning of nosql datastores for dynamic metagenomics workloads.
In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,
pages 28-40. ACM, 2017.

15

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

Ashraf Mahgoub, Paul Wood, Alexander Medoff, Subrata Mitra, Folker
Meyer, Somali Chaterji, and Saurabh Bagchi. SOPHIA: Online recon-
figuration of clustered nosql databases for time-varying workloads.
In 2019 USENIX Annual Technical Conference (USENLX ATC 19), pages
223-240, Renton, WA, July 2019. USENIX Association.

Nikita Mishra, Connor Imes, John D Lafferty, and Henry Hoffmann.
Caloree: Learning control for predictable latency and low energy. ACM
SIGPLAN Notices, 53(2):184-198, 2018.

Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. Caramel:
Detecting and fixing performance problems that have non-intrusive
fixes. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 902-912. IEEE, 2015.

Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymp-
totic performance bugs in collection traversals. In ACM SIGPLAN
Notices, volume 50, pages 369-378. ACM, 2015.

Stack Overflow. Hbase region server oom and shuts down.
https://stackoverflow.com/questions/31239887/hbase-region-server-
oom-and-shuts-down.

Ariel Rabkin and Randy Katz. Precomputing possible configuration
error diagnoses. In Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, pages 193-202. IEEE
Computer Society, 2011.

Katam Sathvik. Performance tuning of big data platform: Cassandra
case study, 2016.

Linhai Song and Shan Lu. Performance diagnosis for inefficient loops.
In Proceedings of the 39th International Conference on Software Engi-
neering, pages 370-380. IEEE Press, 2017.

Helen] Wang, John C Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang.
Automatic misconfiguration troubleshooting with peerpressure. In
OSDI, volume 4, pages 245-257, 2004.

Shu Wang, Chi Li, Henry Hoffmann, Shan Lu, William Sentosa,
and Achmad Imam Kistijantoro. Understanding and auto-adjusting
performance-sensitive configurations. In ACM SIGPLAN Notices, vol-
ume 53, pages 154-168. ACM, 2018.

Yi-Min Wang, Chad Verbowski, John Dunagan, Yu Chen, Helen]
Wang, Chun Yuan, and Zheng Zhang. Strider: A black-box, state-
based approach to change and configuration management and support.
Science of Computer Programming, 53(2):143-164, 2004.
IBM Watson. Watson libraries for
wala.sourceforge.net/wiki/index.php. Main Page.

Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.
Dili Wu and Aniruddha Gokhale. A self-tuning system based on ap-
plication profiling and performance analysis for optimizing hadoop
mapreduce cluster configuration. In 20th Annual International Confer-
ence on High Performance Computing, pages 89-98. IEEE, 2013.

Wen Xiong, Zhengdong Bei, Chengzhong Xu, and Zhibin Yu. Ath:
Auto-tuning hbasedAZs configuration via ensemble learning. IEEE
Access, 5:13157-13170, 2017.

Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasu-
pathy, and Rukma Talwadker. Hey, you have given me too many
knobs!: understanding and dealing with over-designed configuration
in system software. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 307-319. ACM, 2015.
Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long
Jin, and Shankar Pasupathy. Early detection of configuration errors
to reduce failure damage. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 619-634, 2016.
Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,
Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy. Do not blame
users for misconfigurations. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 244-259. ACM, 2013.
Junwen Yang, Cong Yan, Chengcheng Wan, Shan Lu, and Alvin Che-
ung. View-centric performance optimization for database-backed web
applications. In Proceedings of the 41st International Conference on

analysis.

https://status.cloud.google.com/incident/storage/19002
https://status.cloud.google.com/incident/storage/19002
https://issues.apache.org/jira/browse/HBASE-3813
https://issues.apache.org/jira/browse/HBASE-3813
https://www.wsj.com/articles/facebook-and-instagram-suffer-lengthy-outages-11552539752
https://www.wsj.com/articles/facebook-and-instagram-suffer-lengthy-outages-11552539752
https://stackoverflow.com/questions/31239887/hbase-region-server-oom-and-shuts-down
https://stackoverflow.com/questions/31239887/hbase-region-server-oom-and-shuts-down

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

[40]

(41]

(42]

Software Engineering, pages 994-1004. IEEE Press, 2019.

Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N
Bairavasundaram, and Shankar Pasupathy. An empirical study on
configuration errors in commercial and open source systems. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 159-172. ACM, 2011.

Zhibin Yu, Zhendong Bei, and Xuehai Qian. Datasize-aware high
dimensional configurations auto-tuning of in-memory cluster com-
puting. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS °18, pages 564-577, New York, NY, USA, 2018. ACM.
Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Ver-
bowski, and Arunvijay Kumar. Context-based online configuration-
error detection. In Proceedings of the 2011 USENIX conference on USENIX

16

[43]

[44]

[45]

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu

annual technical conference, pages 28-28. USENIX Association, 2011.
Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu
Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting
system environment and correlation information for misconfiguration
detection. In ACM SIGPLAN Notices, volume 49, pages 687-700. ACM,
2014.

Sai Zhang and Michael D Ernst. Automated diagnosis of software
configuration errors. In Proceedings of the 2013 International Conference
on Software Engineering, pages 312-321. IEEE Press, 2013.

Yuging Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma,
Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. Bestconfig: tapping
the performance potential of systems via automatic configuration
tuning. In Proceedings of the 2017 Symposium on Cloud Computing,
pages 338-350. ACM, 2017.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Performance Impact Taxonomy
	2.1 Data Dependency
	2.2 IF-related Control Dependency
	2.3 LOOP-related Control Dependency
	2.4 Discussion

	3 PerfConf and Pattern Identification
	3.1 Identifying PerfConfs and PerfOps
	3.2 Identifying PerfConf patterns
	3.3 Discussion

	4 Analysis Beyond Patterns
	4.1 Input Analysis
	4.2 Slope Analysis
	4.3 Configuration Setting Range Analysis
	4.4 Configuration Relation Analysis
	4.5 Monotonicity Analysis

	5 Evaluation
	5.1 User-facing PerfConf Identification
	5.2 Performance Pattern Identification
	5.3 Performance Property Inference
	5.4 Analysis Time
	5.5 Applying LearnConf for Performance Tuning
	5.6 Limitations of LearnConf

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

